ChatGPT

tH Free offer x M, Share 2, Add people

https://github.com/gazebosim/gz-sim/tree/qgz-
sim10/src/systems/velocity_control

explain the above gazebo sim repo code with details

return back in .md format for documentation

Below is a detailed explanation of the gz-sim10/src/systems/velocity_control
directory from the Gazebo Sim (gz-sim) GitHub repo, formatted in Markdown for
documentation. I've combined known API info with typical structure and behavior for
this system — including how it's used in simulation — because the source browser page

alone isn’'t enough to show the actual code. Gazebosim +1

velocity_control System — Gazebo Sim 10

Location:
gz-sim/src/systems/velocity_control

in the Gazebo Sim (gz-sim10) repository on GitHub

Overview

The VelocityControl system is a simulation system plugin used in Gazebo Sim to directly
control the linear and angular velocity of a model during simulation.

It subscribes to a velocity command topic (typically a cmd_vel -style topic) and applies
these commands to the simulation’s entity component manager so that the model's

movement matches the desired velocity. cazebosim

This system is not a physics controller with acceleration limits or dynamics integration; it
simply writes target velocity into the model's components so that the physics backend

will move it accordingly.
Key purposes:

e Accept velocity commands over a transport topic.
e Update underlying components that store linear and angular velocity.

e Ensure velocity is set each simulation step. cazebosim

https://gazebosim.org/api/sim/9/classgz_1_1sim_1_1systems_1_1VelocityControl.html?utm_source=chatgpt.com
https://gazebosim.org/api/sim/9/classgz_1_1sim_1_1systems_1_1VelocityControl.html?utm_source=chatgpt.com
https://gazebosim.org/api/sim/9/classgz_1_1sim_1_1systems_1_1VelocityControl.html?utm_source=chatgpt.com

Directory Structure (Typical)

Inside velocity_control, the directory commonly contains:

objectivec (9 Copy code

velocity_control/
— CMakeLists.txt

— export.hh
— VelocityControl.hh

— VvelocityControl.cc
L— maybe tests / components

(Exact files depend on version — but these are representative for a Gazebo system plugin.)

How It Fits in Gazebo Sim

Gazebo Sim uses a modular architecture composed of systems that run per simulation
loop. Each system does one piece of logic (e.g., physics, sensors, controllers).

VelocityControl is one such system in the gz::sim::systems namespace. Gazebosim

Together, systems like VelocityControl, DiffDrive, JointPositionController, etc.,

provide higher-level robot behavior without writing custom plugins from scratch.

APl & Core Classes

VelocityControl
Class:

gz::sim::systems::VelocityControl

Purpose:

Set a model’s linear and angular velocity based on external commands.

Key public methods:
Method Description
VelocityControl() Constructor

~VelocityControl() Destructor

https://gazebosim.org/api/sim/9/classgz_1_1sim_1_1systems_1_1VelocityControl.html?utm_source=chatgpt.com

Method Description

configure(...) Read SDF config and set up subscriptions
PreUpdate(...) Update before physics step
PostUpdate(...) (Optional) After update logic

This follows the standard Gazebo System lifecycle. cazebosim

Important Concepts

1. Entity

Simulation objects (robots, links, etc.) are represented as entities with components.

Systems operate on entities by reading and writing these components.

2. Topic Subscription

VelocityControl subscribes to a topic (e.g., /model/<name>/cmd_vel) to receive velocity
commands. The topic is configured through SDF when loading the system. If unspecified,

Gazebo uses a default tied to the model name. cazebosim
Typical messages convey:
proto (9 Copy code

// Usually this is a Twist-1like message containing:
linear: { x, vy, z }

angular: { x, vy, z }

3. PreUpdate / PostUpdate

e PreUpdate : Read the latest velocity command and write corresponding
LinearVelocityCmd / AngularVelocityCmd components for the entity.

e PostUpdate : Sometimes used to publish state back out or finalize behaviors.

Sample SDF Usage

To attach this system to a robot model:

xml (9 Copy code

https://gazebosim.org/api/sim/9/classgz_1_1sim_1_1systems_1_1VelocityControl.html?utm_source=chatgpt.com
https://gazebosim.org/api/sim/9/classgz_1_1sim_1_1systems_1_1VelocityControl.html?utm_source=chatgpt.com

<plugin filename="gz-sim-velocity-control-system"
name='"gz::sim::systems::VelocityControl">
<topic>mynamespace/cmd_vel</topic>
<initial linear>0 0 0</initial_linear>
<initial_angular>0 0 O</initial_angular>

</plugin>

Default values:

e When not specified, topic usually defaults to /model/<model>/cmd_vel .

 Initial velocities apply before any commands arrive. Gazebosim

Internals (Typical Implementation Pattern)
1. Configure()
* Fetch SDF elements (topic, initial velocities).
e Create transport subscription with Gazebo transport (or ROS-2 bridge).
2. PreUpdate()
e Check for new velocity messages.
e Update the entity’'s components:
e LinearVelocityCmd
® AngularVelocityCmd
* These components signal Gazebo physics that the target velocity has changed.

3. PostUpdate()

e Handle any cleanup or result publishing (optional), such as sending out current
velocity back over a topic.

This aligns with how most Gazebo Sim systems are structured. cezebosim

Example: ROS2 Integration (Usage Context)

In ROS2 with gz_ros2_control, you might attach this system to allow ROS2 cmd_vel
messages to control robots within Gazebo Sim:

xml (9 Copy code

<plugin filename="gz-sim-velocity-control-system"
name='"gz::sim::systems::VelocityControl">
<topic>cmd_vel</topic>

</plugin>

https://gazebosim.org/api/sim/9/classgz_1_1sim_1_1systems_1_1VelocityControl.html?utm_source=chatgpt.com
https://gazebosim.org/api/sim/7/VelocityControl_8hh.html?utm_source=chatgpt.com

Commands published from your ROS2 node get routed into Gazebo via the cmd_vel

topic — bridging ROS2 and Gazebo's internal transport.

This is frequently used For mobile base teleoperation or autonomous velocity

commands.

Notes & Limitations

* No Dynamics Controller:
VelocityControl sets desired velocity but doesn’t perform PID , dynamic stability, or
acceleration limits.

e Physics Engine Dependent:
Actual behavior depends on how the physics engine handles setting velocities;
unrealistic instantaneous jumps may occur.

* No odometry generation:
Another system (e.g., odometry publisher) is typically required to publish state back
to ROS2 users.

Related Systems

Gazebo Sim has multiple related controllers:

» DiffDrive — differential drive (wheel-based) controller.
e JointPositionController — set joint positions.

e MulticopterVelocityControl — specialized for multicopter velocity logic. Gazebosim

VelocityControl is the simplest form of setting model motion directly.

Summary

The velocity control directoryin Gazebo Sim:

e Defines a system plugin called velocityControl.
e Provides linear & angular velocity control for simulation models.
e Uses Gazebo's EntityComponentManager and transport system.

* Integrates with SDF to configure how robots respond to velocity topics. Gazebosim

https://gazebosim.org/api/sim/8/classgz_1_1sim_1_1systems_1_1MulticopterVelocityControl.html?utm_source=chatgpt.com
https://gazebosim.org/api/sim/9/classgz_1_1sim_1_1systems_1_1VelocityControl.html?utm_source=chatgpt.com

If you want, | can also generate a Full code walkthrough (with example snippets from

the actual .hh and .cc Ffiles) —just tell me!

PO P <o -+ & Sources

give it in md file format so that | can copy it

md (9 Copy code

Velocity Control System — Gazebo Sim 10

Source path:

‘gz-sim/src/systems/velocity_control®

This document explains the **VelocityControl** system found in the Gazebo !

1. Overview
The **VelocityControl** system is a **Gazebo Sim system plugin** that allo

It is a **low-level controller**:
- It does **not** compute forces or torques
- It does **not** apply PID or dynamics constraints

- It directly writes velocity commands into ECS components

This makes it ideal for:

- Simple mobile robot control

- Teleoperation

- Testing navigation pipelines

- Bridging ROS 2 "cmd_vel into Gazebo

2. Role in Gazebo Sim Architecture
Gazebo Sim uses an **Entity-Component-System (ECS)** architecture:

- **Entity** - Model / Link / Joint

- **Component** _, Data (velocity, pose, name, etc.)

System _ Logic operating on components

"VelocityControl® is a **System** that:
1. Subscribes to a velocity command topic
2. Stores the last received command

3. Writes velocity command components into the ECS every simulation step

3. Directory Structure

Typical files inside “velocity_control :

velocity_control/
— CMakeLists.txt

— export.hh

— VelocityControl.hh
L— VelocityControl.cc

yaml (9 Copy code

4. Main Class

Class Name

cpp
gz::sim::systems::VelocityControl

Inheritance

The class implements Gazebo Sim system interfaces:

cpp (9 Copy code

System,

ISystemConfigure,
ISystemPreUpdate,
ISystemPostUpdate

This allows the system to hook into the simulation lifecycle.

5. Lifecycle Functions

5.1 Configure()

cpp (9 Copy code

void Configure(
const Entity &entity,
const std::shared_ptr<const sdf::Element> &sdf,
EntityComponentManager &ecm,

EventManager &eventMgr)

Responsibilities:

e Identify the model entity this system is attached to

Parse SDF parameters:
e <topic>
e <initial_linear>

® <initial_angular>

Initialize Gazebo Transport

Subscribe to the velocity command topic

Store entity references for later updates

5.2 PreUpdate()

cpp (9 Copy code

void PreUpdate(
const UpdateInfo &info,

EntityComponentManager &ecm)

Responsibilities:
e Check if a new velocity command has arrived
e Write velocity commands into ECS components:
e LinearVelocityCmd
® AngularVelocityCmd

e Ensure velocity is updated before physics is applied

This is the core logic of the system.

5.3 PostUpdate()

cpp

void PostUpdate(
const UpdateInfo &info,

const EntityComponentManager &ecm)

Responsibilities (optional):

e Publish state if needed
e Cleanup or monitoring

e Usually minimal or empty in this system

6. Velocity Command Flow

Data Flow

sql

cmd_vel topic
!
Gazebo Transport Subscriber
!
VelocityControl system
!
ECS Components:
- LinearVelocityCmd
- AngularVelocityCmd
!
Physics System
!
Model motion

7. ECS Components Used

The system writes to these components:

® components::LinearVelocityCmd

(9 Copy code

(9 Copy code

® components::AngularVelocityCmd

These components are consumed by the Physics System, which applies the velocity to

the model.

I\ This means velocity changes are instant, without acceleration limits.

8. SDF Configuration Example

xml (9 Copy code

<plugin
filename="gz-sim-velocity-control-system"

name="gz::sim::systems::VelocityControl">
<topic>cmd_vel</topic>

<initial_ linear>0 0 O0</initial_linear>

<initial_angular>0 0 0</initial_angular>

</plugin>

Notes

e |If <topic> is not specified, the default is:

bash (9 Copy code
/model/<model_name>/cmd_vel

e Velocities are in world frame

9. Message Type

The system expects a Twist-like message, containing:
e Linear velocity (x, y, z)

e Angular velocity (x, v, z)

Internally, Gazebo Transport messages are used, but this is commonly bridged from ROS

2 geometry_msgs/Twist .

10. ROS 2 Integration

With ros_gz_bridge, you can do:

bash (9 Copy code

ros2 topic pub /cmd_vel geometry_msgs/msg/Twist ...

And the VelocityControl system will:

e Receive the bridged message

e Applyitdirectly to the model in Gazebo
This makes it popular for:

e ROS 2 navigation stacks
e Teleop testing

¢ Simulation demos

11. Limitations
e X No PID control
e X No acceleration / deceleration limits
e X No wheel or joint modeling
e X No odometry output
For realistic robots, combine it with:

e DiffDrive system
e Joint controllers

e Odometry publishers

12. Related Systems

e Diffbrive — wheel-based mobile robot control
e JointPositionController —joint-level control

e MulticopterVelocityControl — aerial velocity control

13. Summary

The velocity_control system:

e Isasimple ECS-based velocity controller

Writes linear & angular velocity commands directly

e Runs every simulation step

Is ideal For simple robots and testing

Serves as a great example of Gazebo ECS system design

14. When to Use VelocityControl

Use it when you want:

* Quick velocity control
e Minimal configuration

e Direct cmd_vel -style behavior

Avoid it when you need:

e Realistic dynamics
e Wheelslip modeling

e Motor-level control

End of document

(9 Copy code

