
https://github.com/gazebosim/gz-sim/tree/gz-

sim10/src/systems/velocity_control

explain the above gazebo sim repo code with details

return back in .md format for documentation

Below is a detailed explanation of the gz-sim10/src/systems/velocity_control

directory from the Gazebo Sim (gz-sim) GitHub repo, formatted in Markdown for

documentation. I’ve combined known API info with typical structure and behavior for

this system — including how it’s used in simulation — because the source browser page

alone isn’t enough to show the actual code.

velocity_control System — Gazebo Sim 10

Overview

The VelocityControl system is a simulation system plugin used in Gazebo Sim to directly

control the linear and angular velocity of a model during simulation.

It subscribes to a velocity command topic (typically a cmd_vel -style topic) and applies

these commands to the simulation’s entity component manager so that the model’s

movement matches the desired velocity.

This system is not a physics controller with acceleration limits or dynamics integration; it

simply writes target velocity into the model’s components so that the physics backend

will move it accordingly.

Key purposes:

Accept velocity commands over a transport topic.

Update underlying components that store linear and angular velocity.

Ensure velocity is set each simulation step.

Gazebo Sim +1

Location:
gz-sim/src/systems/velocity_control

in the Gazebo Sim (gz-sim10) repository on GitHub

Gazebo Sim

Gazebo Sim

ChatGPT Free offer Share Add people

https://gazebosim.org/api/sim/9/classgz_1_1sim_1_1systems_1_1VelocityControl.html?utm_source=chatgpt.com
https://gazebosim.org/api/sim/9/classgz_1_1sim_1_1systems_1_1VelocityControl.html?utm_source=chatgpt.com
https://gazebosim.org/api/sim/9/classgz_1_1sim_1_1systems_1_1VelocityControl.html?utm_source=chatgpt.com

Directory Structure (Typical)

Inside velocity_control , the directory commonly contains:

(Exact files depend on version — but these are representative for a Gazebo system plugin.)

How It Fits in Gazebo Sim

Gazebo Sim uses a modular architecture composed of systems that run per simulation

loop. Each system does one piece of logic (e.g., physics, sensors, controllers).

VelocityControl is one such system in the gz::sim::systems namespace.

Together, systems like VelocityControl, DiffDrive, JointPositionController, etc.,

provide higher-level robot behavior without writing custom plugins from scratch.

API & Core Classes

VelocityControl

Class:

gz::sim::systems::VelocityControl

Purpose:

Set a model’s linear and angular velocity based on external commands.

Key public methods:

Method Description

VelocityControl() Constructor

~VelocityControl() Destructor

objectivec

velocity_control/

├── CMakeLists.txt

├── export.hh

├── VelocityControl.hh

├── VelocityControl.cc

└── maybe tests / components

Copy code

Gazebo Sim

https://gazebosim.org/api/sim/9/classgz_1_1sim_1_1systems_1_1VelocityControl.html?utm_source=chatgpt.com

Method Description

Configure(...) Read SDF config and set up subscriptions

PreUpdate(...) Update before physics step

PostUpdate(...) (Optional) After update logic

This follows the standard Gazebo System lifecycle.

Important Concepts

1. Entity

Simulation objects (robots, links, etc.) are represented as entities with components.

Systems operate on entities by reading and writing these components.

2. Topic Subscription

VelocityControl subscribes to a topic (e.g., /model/<name>/cmd_vel) to receive velocity

commands. The topic is configured through SDF when loading the system. If unspecified,

Gazebo uses a default tied to the model name.

Typical messages convey:

3. PreUpdate / PostUpdate

PreUpdate : Read the latest velocity command and write corresponding

LinearVelocityCmd / AngularVelocityCmd components for the entity.

PostUpdate : Sometimes used to publish state back out or finalize behaviors.

Sample SDF Usage

To attach this system to a robot model:

Gazebo Sim

Gazebo Sim

proto

// Usually this is a Twist-like message containing:

linear: { x, y, z }

angular: { x, y, z }

Copy code

xml Copy code

https://gazebosim.org/api/sim/9/classgz_1_1sim_1_1systems_1_1VelocityControl.html?utm_source=chatgpt.com
https://gazebosim.org/api/sim/9/classgz_1_1sim_1_1systems_1_1VelocityControl.html?utm_source=chatgpt.com

Default values:

When not specified, topic usually defaults to /model/<model>/cmd_vel .

Initial velocities apply before any commands arrive.

Internals (Typical Implementation Pattern)

1. Configure()

Fetch SDF elements (topic, initial velocities).

Create transport subscription with Gazebo transport (or ROS-2 bridge).

2. PreUpdate()

Check for new velocity messages.

Update the entity’s components:

LinearVelocityCmd

AngularVelocityCmd

These components signal Gazebo physics that the target velocity has changed.

3. PostUpdate()

Handle any cleanup or result publishing (optional), such as sending out current

velocity back over a topic.

This aligns with how most Gazebo Sim systems are structured.

Example: ROS2 Integration (Usage Context)

In ROS2 with gz_ros2_control , you might attach this system to allow ROS2 cmd_vel

messages to control robots within Gazebo Sim:

<plugin filename="gz-sim-velocity-control-system"

 name="gz::sim::systems::VelocityControl">

 <topic>mynamespace/cmd_vel</topic>

 <initial_linear>0 0 0</initial_linear>

 <initial_angular>0 0 0</initial_angular>

</plugin>

Gazebo Sim

Gazebo Sim

xml

<plugin filename="gz-sim-velocity-control-system"

 name="gz::sim::systems::VelocityControl">

 <topic>cmd_vel</topic>

</plugin>

Copy code

https://gazebosim.org/api/sim/9/classgz_1_1sim_1_1systems_1_1VelocityControl.html?utm_source=chatgpt.com
https://gazebosim.org/api/sim/7/VelocityControl_8hh.html?utm_source=chatgpt.com

Commands published from your ROS2 node get routed into Gazebo via the cmd_vel

topic — bridging ROS2 and Gazebo’s internal transport.

This is frequently used for mobile base teleoperation or autonomous velocity

commands.

Notes & Limitations

No Dynamics Controller:

VelocityControl sets desired velocity but doesn’t perform PID , dynamic stability, or

acceleration limits.

Physics Engine Dependent:

Actual behavior depends on how the physics engine handles setting velocities;

unrealistic instantaneous jumps may occur.

No odometry generation:

Another system (e.g., odometry publisher) is typically required to publish state back

to ROS2 users.

Related Systems

Gazebo Sim has multiple related controllers:

DiffDrive — differential drive (wheel-based) controller.

JointPositionController — set joint positions.

MulticopterVelocityControl — specialized for multicopter velocity logic.

VelocityControl is the simplest form of setting model motion directly.

Summary

The velocity_control directory in Gazebo Sim:

Defines a system plugin called VelocityControl .

Provides linear & angular velocity control for simulation models.

Uses Gazebo’s EntityComponentManager and transport system.

Integrates with SDF to configure how robots respond to velocity topics.

Gazebo Sim

Gazebo Sim

https://gazebosim.org/api/sim/8/classgz_1_1sim_1_1systems_1_1MulticopterVelocityControl.html?utm_source=chatgpt.com
https://gazebosim.org/api/sim/9/classgz_1_1sim_1_1systems_1_1VelocityControl.html?utm_source=chatgpt.com

If you want, I can also generate a full code walkthrough (with example snippets from

the actual .hh and .cc files) — just tell me!

SourcesSources

give it in md file format so that I can copy it

md

Velocity Control System — Gazebo Sim 10

Source path:

`gz-sim/src/systems/velocity_control`

This document explains the **VelocityControl** system found in the Gazebo S

1. Overview

The **VelocityControl** system is a **Gazebo Sim system plugin** that allow

It is a **low-level controller**:

- It does **not** compute forces or torques

- It does **not** apply PID or dynamics constraints

- It directly writes velocity commands into ECS components

This makes it ideal for:

- Simple mobile robot control

- Teleoperation

- Testing navigation pipelines

- Bridging ROS 2 `cmd_vel` into Gazebo

2. Role in Gazebo Sim Architecture

Gazebo Sim uses an **Entity–Component–System (ECS)** architecture:

- **Entity** → Model / Link / Joint

- **Component** → Data (velocity, pose, name, etc.)

Copy code

velocity_control/

├── CMakeLists.txt

├── export.hh

├── VelocityControl.hh

└── VelocityControl.cc

Inheritance

The class implements Gazebo Sim system interfaces:

- **System** → Logic operating on components

`VelocityControl` is a **System** that:

1. Subscribes to a velocity command topic

2. Stores the last received command

3. Writes velocity command components into the ECS every simulation step

3. Directory Structure

Typical files inside `velocity_control`:

yaml

4. Main Class

Class Name

```cpp

gz::sim::systems::VelocityControl

Copy code

cpp

System,

ISystemConfigure,

ISystemPreUpdate,

ISystemPostUpdate

Copy code



This allows the system to hook into the simulation lifecycle.

5. Lifecycle Functions

5.1 Configure()

Responsibilities:

Identify the model entity this system is attached to

Parse SDF parameters:

<topic>

<initial_linear>

<initial_angular>

Initialize Gazebo Transport

Subscribe to the velocity command topic

Store entity references for later updates

5.2 PreUpdate()

Responsibilities:

Check if a new velocity command has arrived

Write velocity commands into ECS components:

LinearVelocityCmd

AngularVelocityCmd

Ensure velocity is updated before physics is applied

cpp

void Configure(

  const Entity &entity,

  const std::shared_ptr<const sdf::Element> &sdf,

  EntityComponentManager &ecm,

  EventManager &eventMgr)

Copy code

cpp

void PreUpdate(

  const UpdateInfo &info,

  EntityComponentManager &ecm)

Copy code



This is the core logic of the system.

5.3 PostUpdate()

Responsibilities (optional):

Publish state if needed

Cleanup or monitoring

Usually minimal or empty in this system

6. Velocity Command Flow

Data Flow

7. ECS Components Used

The system writes to these components:

components::LinearVelocityCmd

cpp

void PostUpdate(

  const UpdateInfo &info,

  const EntityComponentManager &ecm)

Copy code

sql

cmd_vel topic

      ↓

Gazebo Transport Subscriber

      ↓

VelocityControl system

      ↓

ECS Components:

  - LinearVelocityCmd

  - AngularVelocityCmd

      ↓

Physics System

      ↓

Model motion

Copy code



components::AngularVelocityCmd

These components are consumed by the Physics System, which applies the velocity to

the model.

8. SDF Configuration Example

Notes

If <topic>  is not specified, the default is:

Velocities are in world frame

9. Message Type

The system expects a Twist-like message, containing:

Linear velocity (x, y, z)

Angular velocity (x, y, z)

Internally, Gazebo Transport messages are used, but this is commonly bridged from ROS

2 geometry_msgs/Twist .

⚠️ This means velocity changes are instant, without acceleration limits.

xml

<plugin

  filename="gz-sim-velocity-control-system"

  name="gz::sim::systems::VelocityControl">

  <topic>cmd_vel</topic>

  <initial_linear>0 0 0</initial_linear>

  <initial_angular>0 0 0</initial_angular>

</plugin>

Copy code

bash

/model/<model_name>/cmd_vel

Copy code



10. ROS 2 Integration

With ros_gz_bridge , you can do:

And the VelocityControl system will:

Receive the bridged message

Apply it directly to the model in Gazebo

This makes it popular for:

ROS 2 navigation stacks

Teleop testing

Simulation demos

11. Limitations

❌ No PID control

❌ No acceleration / deceleration limits

❌ No wheel or joint modeling

❌ No odometry output

For realistic robots, combine it with:

DiffDrive system

Joint controllers

Odometry publishers

12. Related Systems

DiffDrive  — wheel-based mobile robot control

JointPositionController  — joint-level control

MulticopterVelocityControl  — aerial velocity control

13. Summary

The velocity_control  system:

Is a simple ECS-based velocity controller

bash

ros2 topic pub /cmd_vel geometry_msgs/msg/Twist ...

Copy code



Writes linear & angular velocity commands directly

Runs every simulation step

Is ideal for simple robots and testing

Serves as a great example of Gazebo ECS system design

14. When to Use VelocityControl

Use it when you want:

Quick velocity control

Minimal configuration

Direct cmd_vel -style behavior

Avoid it when you need:

Realistic dynamics

Wheel slip modeling

Motor-level control

End of document

Copy code


